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Lyapunov exponent of ion motion in microplasmas
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Dynamical chaos is studied in the Hamiltonian motion of ions confined in a Penning trap and forming
so-called microplasmas. The dynamical chaos of the ion motion is characterized by the maximum Lyapunov
exponent. Results are reported on the dependence of this exponent on the energy of the system, on the number
of ions, as well as on the geometry of the trap. Different dynamical regimes are characterized from the
crystalline state to a strongly chaotic regime, and to quasiharmonic motion in the external potential of the trap.
Across these regimes, the Lyapunov exponent increases, reaches a maximum value, and decreases as a function
of energy. Besides, the maximum value of the Lyapunov exponent increases as a function of the number of
ions.
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I. INTRODUCTION

Dynamical chaos provides a strong mechanism for
mixing of phase-space volumes and the loss of statist
correlations during time evolution, these latter being cen
properties in nonequilibrium statistical mechanism. Chao
characterized by positive Lyapunov exponents which m
sure the rate of exponential separation between nearby
jectories@1#. A positive Lyapunov exponent is thus the si
nature of an exponential type of sensitivity to initi
conditions. Several systems of statistical mechanics h
been shown to present a full spectrum of positive Lyapun
exponents@2#. In particular, the characteristic quantities
chaos have been obtained for the hard-ball fluids, thank
the methods of statistical mechanics@3–5#. In those fluids,
explicit values have been computed for the maxim
Lyapunov exponent as well as for the Kolmogorov-Sinai e
tropy per unit time, which is equal to the sum of positi
Lyapunov exponentsl j according to Pesin’s theorem@1#

hKS5 (
l j .0

l j , ~1!

which holds for bounded hyperbolic systems and is expec
to apply also to more general bounded dynamical syste
As a consequence, the space-time entropy of the hard
fluids, i.e., the Kolmogorov-Sinai entropy per unit time a
unit volume, turns out to be positive@3#. Moreover, numeri-
cal simulations show that the dynamics of typical systems
particles interacting by smooth potentials is also expon
tially sensitive to initial conditions with positive Lyapuno
exponents and a positive space-time entropy@6–11#.

A remarkable fact is that a positive space-time entropy
the feature of typical stochastic processes of statistical
chanics. This is the case for the probabilistic cellular a
tomata@12#, as well as for the fluctuating Boltzmann equ
tion @13#, which can be simulated by Bird’s direct simulatio
Monte Carlo method@14#. Such stochastic processes requ
the call of a pseudorandom generator at each time ste
each space cell. This local stochasticity is characterized
positive space-time entropy@15#. This dynamical entropy
1063-651X/2003/68~5!/056209~7!/$20.00 68 0562
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measures the amount of randomness which is generate
the process in each unit volume and unit time. Dynami
chaos is thus a mechanism which is compatible with both
positive space-time entropy of the typical stochastic p
cesses of statistical mechanics and the determinism of
underlying microscopic dynamics.

Recent works have also drawn the attention to syste
with zero Lyapunov exponents, presenting weaker mec
nisms of mixing and sensitivity to initial conditions than d
namical chaos@16–19#. Such systems also sustain transp
processes such as diffusion as well as some stochasticit

A fundamental question is to know whether natural man
particle systems present strong or weak kinds of sensiti
to initial conditions. This question can be addressed not o
by theoretical or numerical methods but also experimenta
The experimental determination of the type of sensitivity
initial conditions would require the direct observation of t
trajectories of the particles and the measurement
Lyapunov exponents, thanks to the Eckmann-Ruelle met
@1#. During the last decade, the tracking of microscopic p
ticles has become an experimental possibility in the so-ca
microplasmas, which are systems of atomic ions or char
microparticles confined in Paul or Penning traps@20–25#.
The ions repel each other by Coulomb interaction and t
are separated by distances of the order of micrometer
more, which allows the observation and tracking of th
trajectory.

The purpose of the present paper is to anticipate poss
future experimental measure of Lyapunov exponents in
croplasmas with a theoretical and numerical study of th
systems. Lyapunov exponents have already been investig
in spatially extended plasmas@26–28# as well as in a one-
dimensional wave-particle model of plasma@29,30#. How-
ever, no work seems to have been devoted to the Lyapu
exponents of microplasmas confined in an electromagn
trap. We here focus on microplasmas in Penning traps
investigate the behavior of the maximum Lyapunov expon
of the Hamiltonian motion of the ions. We consider a real
tic Hamiltonian model which is three dimensional and co
tains a relatively small number of ions for which the tracki
of trajectories of individual ions should remain feasible. B
©2003 The American Physical Society09-1
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cause of the long range of the Coulomb interaction betw
the ions, the Lyapunov exponents are expected to beh
differently in microplasmas than in many-particle syste
with short-ranged interaction such as the hard-ball flui
Moreover, microplasmas are nonextensive dynamical s
tems with a finite number of degrees of freedom. In mic
plasmas composed of more than a few dozen ions, the
havior of the maximum Lyapunov exponent can neverthe
be understood, thanks to statistical mechanics, as shown
below.

The plan of the paper is the following. The system and
Hamiltonian are defined in Sec. II. Its dynamical and sta
tical properties are described in Sec. III. Its sensitivity
initial conditions is characterized by the maximum Lyapun
exponent in Sec. IV. Conclusions are drawn in Sec. V.

II. THE SYSTEM

We consider a microplasma composed ofN ions of mass
m and electric chargeq in a Penning trap with the electro
static potential

F~x,y,z!5V0

2z22x22y2

r 0
212z0

2
, ~2!

and the magnetic field along thez direction of vector poten-
tial

A~x,y,z!5
1

2
~2By,Bx,0!. ~3!

The Hamiltonian of the full system is given by

H5(
i 51

N H 1

2m
@pi2qA~r i !#

21qF~r i !J 1 (
1< i , j <N

q2

4p«0r i j
,

~4!

where r i5(xi ,yi ,zi) is the position of the ioni, r i j is the
distance between the ionsi and j, and «0 is the vacuum
permitivity. In the Penning trap, the ions are submitted to
harmonic confinement in thez direction of frequency

vz5A 4qV0

m~r 0
212z0

2!
, ~5!

and in the perpendicular direction due to the cyclotron m
tion of frequencyvc5qB/m. In a frame rotating around th
z axis at the Larmor frequencyvL5vc/2 the ions feel a
harmonic confinement of frequency

vx5vy5Avc
2

4
2

vz
2

2
~6!

in the direction perpendicular to the magnetic field. In t
rescaled timet5vct, position R5r /a, and energyH
5H/(mvc

2a2) with a5@q2/(4p«0mvc
2)#1/3, the Hamil-

tonian describing the motion in the Larmor rotating fram
becomes
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H5(
i

F1

2
Pi

21S 1

8
2

g2

4 D ~Xi
21Yi

2!1
g2

2
Zi

2G1(
i , j

1

Ri j
,

~7!

with the positionsRi5(Xi ,Yi ,Zi), the canonically conju-
gated momentaPi5(PXi

,PYi
,PZi

), and

g5
vz

vc
. ~8!

The ions are trapped in a bounded motion under the co
tion that

0,ugu,
1

A2
. ~9!

The trap is prolate if 0,ugu,1/A6, isotropic if ugu51/A6,
and oblate if 1/A6,ugu,1/A2. The motion is quasi-one
dimensional in the limitg.0 and quasi-two-dimensional in
the limit ugu.1/A2. TheZ direction is a symmetry axis so
that theZ component of angular momentumLZ5( i(Xi PYi

2Yi PXi
) is conserved. We suppose from now on that t

angular momentum vanishes,LZ50.

III. DYNAMICAL AND STATISTICAL PROPERTIES

In the following, the motion is studied in the Larmor ro
tating frame. Figure 1 depicts typical trajectories of a syst
of N520 ions in an oblate trap in theXY plane perpendicu-
lar to theZ direction of the magnetic field. The ions have
periodic micromotion at frequencyg in theZ direction which
is not apparent in theXY plane where the nontrivial motion
is observed.

At zero temperature or kinetic energy, the system free
in a crystalline state@20–25#. In the present case, the io
crystal is seen in Fig. 1~a!. It is composed of a central ion
surrounded by an inner ring of seven ions and an outer
of 12 ions. At nearly zero temperature, the ions have a q
siperiodic, quasiharmonic motion around their equilibriu
position. It is the regime of normal modes of vibration.

At slightly positive temperatures, the system may alrea
have bifurcated from the regime of quasiharmonic norm
modes to another regime where local modes exist. Thi
already the case in Fig. 1~a!, where we observe that the inne
ring is animated by a slow collective motion, or soft mod
while the outer ring has a configuration which is essentia
fixed. For this to occur the energy should be higher than
energy barriers for locking the rotation of the inner ring wi
respect to the outer ring. Such energy barriers are still v
small with respect to barriers for exchange of ions within
ring or between rings as observed in Fig. 1~b!.

At temperatures high enough for exchanges of ions, th
motion becomes erratic and the ion crystal melts, as see
Figs. 1~b! and 1~c!.

At still higher temperature, the ions form a thermal clo
in which the mean Coulomb potential energy^Vc& starts to
become negligible with respect to the mean kinetic ene
^K& and mean harmonic potential energy^Vh&. Indeed, the
9-2
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total energyE5^K&1^Vh&1^Vc& is then essentially share
between the kinetic energy and the harmonic potential
ergy,

^K&.^Vh&.
E

2
.

3

2
NT, ~10!

with a dimensionless temperature defined byT
[kBT/(mvc

2a2). This is the thermal regime which can b
described by statistical mechanics as explained in the App
dix. The mean square position of the ions is then given b
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FIG. 1. Trajectories of a system of 20 ions withLZ50 in an
oblate Penning trap withg50.7 at total energies:~a! E521.6,
wherel150.001; ~b! E522, wherel150.021; ~c! E523, where
l150.047.X andY are dimensionless coordinates of position.
05620
n-

n-

^Xi
2&5^Yi

2&.
4T

122g2
and ^Zi

2&.
T

g2
. ~11!

The mean Coulomb energy thus decreases at high temp
ture as

^Vc&; K N2

Ri j
L ;

N2

T1/2
. ~12!

The thermodynamic entropy of the ion thermal cloud c
also be estimated by neglecting the Coulomb interaction
get

S.kBN ln
e4~kBT!3

N\vx\vy\vz
, ~13!

wheree5exp(1). This entropy is an increasing function
the temperature, indicating that the spatial distribution of
ions is more and more disordered as the temperature
creases.

IV. SENSITIVITY TO INITIAL CONDITIONS

A. Theory

Sensitivity to initial conditions is characterized by th
growth rate of an infinitesimal perturbationdG on a trajec-
tory of the system in the phase space of positions and
menta of all the particles,G5$Ri ,Pi% i 51

N . This growth rate
is the so-called Lyapunov exponent@1#

l5 lim
t→`

1

t
ln

idG ti
idG0i , ~14!

where idGi is the magnitude of the perturbationdG
5$dRi ,dPi% i 51

N . In many-particle systems, there exist
many Lyapunov exponents as phase-space dimensions. H
we shall be concerned by the maximum Lyapunov expon
l1 computed with Eq.~14! starting from a typical initial
perturbationdG0. The time evolution of the perturbatio
dG5$dRi ,dPi% i 51

N is ruled by the second variation o
Hamiltonian~7! of the system,

d2H5(
i

F1

2
dPi

21S 1

8
2

g2

4 D ~dXi
21dYi

2!1
g2

2
dZi

2G
2

1

2 (
i , j

F dRi j
2

Ri j
3

23
~Ri j •dRi j !

2

Ri j
5 G . ~15!

The first terms describe the time evolution of the pertur
tion under the harmonic potential of the Penning trap. T
motion is regular and would give vanishing Lyapunov exp
nents if the ions were not interacting via the Coulomb pot
tial. Therefore, positive Lyapunov exponents come from
last Coulombic terms inRi j

23 . As shown in the Appendix, the
third inverse moment of the interparticle distance decrea
at high temperature as
9-3
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PIERRE GASPARD PHYSICAL REVIEW E68, 056209 ~2003!
K 1

Ri j
3 L ;

ln T

T3/2
. ~16!

If all the N2 terms asRi j
23 in Eq. ~15! are supposed to con

tribute to the maximum Lyapunov exponent, we should ha

l1;K N2

Ri j
3 L 1/2

;N
~ ln T!1/2

T3/4
for T→`. ~17!

Thus, the expectation is that the maximum Lyapunov ex
nent decreases for increasing temperature and increases
the number of ions in the high-temperature regime.

B. Dependence on energy and ion number

The maximum Lyapunov exponent has been compu
numerically for microplasmas containing more and mo
ions in the oblate Penning trap of Fig. 1. The results
depicted in Fig. 2, where we observe the sharp increase
the Lyapunov exponent just above the minimum energyE0
of the static ion crystal. The Lyapunov exponent increases
to a maximum value and then decreases. We observe tha
maximum value shifts toward higher energies and higher
ues as the number of ions increases.

Let us describe in detail what happens near the minim
energyE0. This energy is the total potential energy of th
system at zero temperature when the kinetic energy vanis
It is shown in the Appendix that this energy should increa
asE0;N5/3 with the number of particles, which is in agre
ment with the numerical results. For energies just aboveE0,
the ions are in quasiharmonic motion following the norm
modes of vibration around the equilibrium position of t
crystal, as discussed in the preceding section. This expl
that the Lyapunov exponent vanishes with the kinetic ene
As seen in Fig. 1 for the system withN520 ions, the ions
soon have enough energy for their motion to be erratic.
instance, Fig. 1~c! depicts the motion of theN520 ions at
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FIG. 2. Maximum Lyapunov exponentl1 vs total energyE for
systems of 5, 10, 20, and 40 ions withLZ50 in an oblate Penning
trap with g50.7. The dashed lines are fits to the data points. T
plotted quantities are dimensionless~see text!.
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the energyE523, where the Lyapunov exponent takes t
value l150.047 significantly lower than its valuel1
50.114 at the maximum occurring around the energyE
540 in Fig. 2 for N520. This shows that the Lyapuno
exponent reaches its maximum value for energies well ab
the melting seen in Fig. 1. Actually, the melting of the crys
does not leave a signature in the behavior of the Lyapu
exponent, except possibly in quasi-one-dimensional syst
~see below!.

The maximum value of the Lyapunov exponent is nume
cally observed to happen at an energy scaling withN as
Emax;N1.6, which is a power-law similar to that ofE0. The
maximum value ofl1 is also increasing withN, as seen in
Fig. 2. This maximum arises at an energy where the h
monic potential energy is of the same order of magnitude
the Coulomb potential energy. The confinement of the io
by the external potential of the trap precludes a possible t
modynamic limit as in translationally invariant systems. T
external potential and the long range of the Coulomb int
action have for consequence the observed increase of
maximum value ofl1 with N.

In order to investigate the high-temperature behavior,
Lyapunov exponent is rescaled by its maximum va
maxE$l1%, where the maximum is taken over the depende
of l1 on the energyE. The rescaled Lyapunov expone
l1 /maxE$l1% is depicted as a function of the rescaled ene
E/E0 in Fig. 3. At high temperature, this rescaled energy
proportional to the temperatureT according to Eq.~10! so
that Fig. 3 essentially depicts the rescaled Lyapunov ex
nent versus temperature. It allows us to test the depend
of the Lyapunov exponent on the temperature. The theor
cal expectation of Eq.~17! is shown as the solid line in Fig
3, which agrees with the decrease of the Lyapunov expon
for our largest values ofN. Deviations occur for smaller
values ofN, which may be due to the fact that the larg
system limit required for the applicability of statistical m

e
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FIG. 3. Log-log plot of the rescaled Lyapunov expone
l1 /maxE$l1% vs the rescaled total energyE/E0 for the systems of 5,
10, 20, and 40 ions shown in Fig. 2. The continuous line is
theoretical prediction~17!, shifted upward to avoid superpositio
with the numerical data. The plotted quantities are dimensionle
9-4
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chanics is not yet reached at such small values ofN55 or
10. Nevertheless, the numerical data are in agreement
the dependence on the temperature predicted by Eq.~17! for
large values ofN, as expected.

C. Dependence on trap geometry

Figure 4 depicts the Lyapunov exponentl1 versus energy
for a microplasma of ten ions in traps of different shapes.
observe that the motion in the isotropic trap is significan
more chaotic than in the extreme oblate and prolate traps
a quasi-one-dimensional~prolate! trap, the Lyapunov expo
nent is observed to increase slowly during the melting of
ion crystal in contrast to the multidimensional cases. T
reason is that the ions keep their one-dimensional order u
a critical energy where ions can jump over each other, le
ing to chaotic motion. In all cases, the Lyapunov expon
decreases at high energy.

V. CONCLUSIONS

In the present paper, we have shown that the motion
ions in microplasmas presents an exponential type of se
tivity to initial conditions characterized by a positive max
mum Lyapunov exponent and we have studied the dep
dence of this exponent on the energy of the system, on
number of ions, as well as on the geometry of the trap.

At low kinetic energy where the microplasma forms
ion crystal, the dynamical chaos is much reduced becaus
motion is quasiharmonic around the crystal equilibrium co
figuration. In order to minimize the dynamical chaos in sy
tems of ions for instance to build well-controlled quantu
devices, our results show that high-dimensional behavio
well as the exchanges of ions should be avoided. Our st
characterizes irregularity in the motion of ions in terms
the maximum Lyapunov exponent and shows under wh
conditions the Lyapunov exponent may remain small eno
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FIG. 4. Maximum Lyapunov exponentl1 vs total energyE for
a system of ten ions withLZ50 in Penning traps withg50.02
~prolate!, g5621/2.0.4082 ~isotropic!, and g50.7 ~oblate!. The
dashed lines are fits to the data points. The plotted quantities
dimensionless~see text!.
05620
ith

e

In

e
e
to
d-
t

of
si-

n-
he

the
-
-

as
dy
f
h
h

for the controlled manipulations of the ions. In this sense,
inverse of the Lyapunov exponent is an indicator of the c
trollability of the motion of ions. The larger the invers
Lyapunov exponent is, the longer is the interval of time wh
the motion is under control. Similarly, the control of the sp
tial distribution of the ions goes with the minimization of th
standard thermodynamic entropy at low temperature.

The Lyapunov exponent turns out to decrease at high t
perature because the Coulomb interaction becomes n
gible and the microplasma forms a thermal cloud of nea
independent ions moving in the harmonic potential of t
trap. At high temperature, the spatial disorder of these mic
plasmas characterized by the standard thermodynamic
tropy ~13! always increases although dynamical chaos
creases as in Eq.~17!. This decrease of the maximum
Lyapunov exponent that we observe here in trapped mic
plasmas in reminiscent of a result obtained for a o
dimensional wave-particle model of plasma@29,30#, in
which the maximum Lyapunov exponent even vanishes
the thermodynamic limit above a critical energy. In the thre
dimensional trapped microplasmas we study here, the m
mum Lyapunov exponent does not vanish as in the mode
Refs.@29,30# but decreases at high temperature according
Eq. ~17! because of the quasiharmonic motion in the tr
potential.

At intermediate values of energy, our results show t
there is a regime of significant dynamical chaos which
comes broader and broader as the number of ions increa
In this intermediate regime, the Lyapunov exponent reac
a maximum value which turns out to increase as a funct
of the number of ions. This dynamical chaos could possi
be measured in experiments tracking the trajectories of
ions of the microplasma using the methods of Refs.@20–25#.
Such an experimental measurement of a Lyapunov expo
would be a great achievement which could solve the fun
mental question to know whether the sensitivity to init
conditions is strong or weak in the many-particle systems
statistical mechanics.
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APPENDIX: STATISTICAL MECHANICS
OF THE ION SYSTEM

In this appendix, we show how to calculate the propert
of interest with statistical mechanics.

The large-scale statistical properties can be described
the following free-energy functional of the densityn(R) of
ions:

F5E2TS5E dRF3

2
T1

g'
2

2
~X21Y2!1

g i
2

2
Z2Gn~R!

1
1

2E dRdR8
n~R! n~R8!

iR2R8i
2TE dRn~R!ln

C

n~R!
,

~A1!

re
9-5
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where g'
2 5 1

4 2g2/2, g i5g, and C
5e5/2(2pT)3/2(a2mvch

21)3, h being Planck constant. Th
chemical potential is obtained from the first variation of t
free energy with respect to the density asdF5*mdndR, and
should be constant at equilibrium so that we get the equ
rium density

n~R!;expF2
g'

2

2T
~X21Y2!2

g i
2

2T
Z22

F~R!

T G , ~A2!

with the mean-field potential

F~R!5E dR
n~R8!

iR2R8i
. ~A3!

The mean-field potential typically decreases asR21 at large
distances and becomes negligible with respect to the
harmonic potential at high temperature. Therefore, the d
sity becomes Gaussian at high temperature.

At zero temperatureT50, the kinetic energy as well a
the last term vanishes in functional~A1!. Taking the Laplac-
ian of the chemical potential and using the formu
¹21/iRi524pd(R), thus, shows that the density is equ
to a constant:

n~R!5
2g'

2 1g i
2

4p
5

1

8p
for T50. ~A4!

This result implies that the radius of a zero-temperat
spherical microplasma scales asA;N1/3 as a function of the
numberN of ions and that its energy as

E5E0;N5/3 for T50. ~A5!

In order to estimate the inverse moments of the interp
ticle distancesRi j 5iRi2Rj i , we need to take into accoun
the Coulomb repulsion between the ions. For a dilute syst
the two-particle density is given by@31#

n2~R,R8!.n~R!n~R8!expS 2
1

TiR2R8i
D , ~A6!
go

et

-

05620
-

p
n-

l

e
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,

where

n~R!.
N g'

2 g i

~2pT!3/2
expF2

g'
2

2T
~X21Y2!2

g i
2

2T
Z2G . ~A7!

Thus the moments are given by

K (
i , j

1

Ri j
a L 5

1

2E dRdR8
n2~R,R8!

iR2R8ia
. ~A8!

Using the permutation symmetry and a change of variab
from R andR8 to their sum and difference, we obtain for a
isotropic system withg'5g i5g that

K 1

Ri j
a L .

g3

2ApT3/2E0

` dr

r a22
expS 2

g2r 2

4T
2

1

Tr D , ~A9!

wherer 5iR2R8i . The first term in the exponential come
from the trap harmonic potential and the second term fr
the Coulomb repulsion. In the limitT→`, the integral is
dominated by the trap harmonic potential for the mome
with a,3 and by the Coulomb repulsion for the momen
with a.3. For a53, the integral can be evaluated by spl
ting it into two incompleteG functions at some valuer 0,
leading to an extra lnT factor in the limitT→`. Whereupon,
we obtain the following asymptotic behavior:

K 1

Ri j
a L ;5

1

Ta/2
for a,3

ln T

T3/2
for a53

Ta29/2 for a.3,

~A10!

as T→`. These results give, in particular, the mean Co
lomb energy of Eq.~12! and the third inverse moment of Eq
~16! at high temperature.
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