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Lyapunov exponent of ion motion in microplasmas
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Dynamical chaos is studied in the Hamiltonian motion of ions confined in a Penning trap and forming
so-called microplasmas. The dynamical chaos of the ion motion is characterized by the maximum Lyapunov
exponent. Results are reported on the dependence of this exponent on the energy of the system, on the number
of ions, as well as on the geometry of the trap. Different dynamical regimes are characterized from the
crystalline state to a strongly chaotic regime, and to quasiharmonic motion in the external potential of the trap.
Across these regimes, the Lyapunov exponent increases, reaches a maximum value, and decreases as a function
of energy. Besides, the maximum value of the Lyapunov exponent increases as a function of the number of
ions.
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[. INTRODUCTION measures the amount of randomness which is generated by
the process in each unit volume and unit time. Dynamical
Dynamical chaos provides a strong mechanism for thehaos is thus a mechanism which is compatible with both the
mixing of phase-space volumes and the loss of statisticgbositive space-time entropy of the typical stochastic pro-
correlations during time evolution, these latter being centratesses of statistical mechanics and the determinism of the
properties in nonequilibrium statistical mechanism. Chaos iginderlying microscopic dynamics.
characterized by positive Lyapunov exponents which mea- Recent works have also drawn the attention to systems
sure the rate of exponential separation between nearby trgyith zero Lyapunov exponents, presenting weaker mecha-
jectories[1]. A positive Lyapunov exponent is thus the sig- nisms of mixing and sensitivity to initial conditions than dy-
nature of an exponential type of sensitivity to initial namical chao§16—19. Such systems also sustain transport
conditions. Several systems of statistical mechanics haVSrocesseS such as diffusion as well as some Stochasticity_
been shown to present a full spectrum of positive Lyapunov A fundamental question is to know whether natural many-
exponentd2]. In particular, the characteristic quantities of particle systems present strong or weak kinds of sensitivity
chaos have been obtained for the hard-ball fluids, thanks tg initial conditions. This question can be addressed not only
the methods of statistical mechani&-5]. In those fluids, py theoretical or numerical methods but also experimentally.
explicit values have been computed for the maximumThe experimental determination of the type of sensitivity to
Lyapunov exponent as well as for the Kolmogorov-Sinai en-nitial conditions would require the direct observation of the
tropy per unit time, which is equal to the sum of positive trajectories of the particles and the measurement of

Lyapunov exponents; according to Pesin’s theoreft] Lyapunov exponents, thanks to the Eckmann-Ruelle method
[1]. During the last decade, the tracking of microscopic par-
hy o 2 _ ticles has become an experimental possibility in the so-called
K= Aj, () . : Y
;>0 microplasmas, which are systems of atomic ions or charged

microparticles confined in Paul or Penning trd@28-25.

which holds for bounded hyperbolic systems and is expected@he ions repel each other by Coulomb interaction and they
to apply also to more general bounded dynamical systemare separated by distances of the order of micrometers or
As a consequence, the space-time entropy of the hard-bathore, which allows the observation and tracking of their
fluids, i.e., the Kolmogorov-Sinai entropy per unit time andtrajectory.
unit volume, turns out to be positif&]. Moreover, numeri- The purpose of the present paper is to anticipate possible
cal simulations show that the dynamics of typical systems ofuture experimental measure of Lyapunov exponents in mi-
particles interacting by smooth potentials is also exponeneroplasmas with a theoretical and numerical study of these
tially sensitive to initial conditions with positive Lyapunov systems. Lyapunov exponents have already been investigated
exponents and a positive space-time entrigy11]. in spatially extended plasma26-2§ as well as in a one-

A remarkable fact is that a positive space-time entropy islimensional wave-particle model of plasrfi29,30. How-
the feature of typical stochastic processes of statistical mesver, no work seems to have been devoted to the Lyapunov
chanics. This is the case for the probabilistic cellular au-exponents of microplasmas confined in an electromagnetic
tomata[12], as well as for the fluctuating Boltzmann equa- trap. We here focus on microplasmas in Penning traps and
tion [13], which can be simulated by Bird’s direct simulation investigate the behavior of the maximum Lyapunov exponent
Monte Carlo method14]. Such stochastic processes requireof the Hamiltonian motion of the ions. We consider a realis-
the call of a pseudorandom generator at each time step itic Hamiltonian model which is three dimensional and con-
each space cell. This local stochasticity is characterized by &ins a relatively small number of ions for which the tracking
positive space-time entropyl5]. This dynamical entropy of trajectories of individual ions should remain feasible. Be-
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cause of the long range of the Coulomb interaction between
the ions, the Lyapunov exponents are expected to behave H=Z P
differently in microplasmas than in many-particle systems ' = 0
with short-ranged interaction such as the hard-ball fluids.
Moreover, microplasmas are nonextensive dynamical sysith the positionsR;=(X;,Y;,Z;), the canonically conju-
tems with a finite number of degrees of freedom. In micro-gated moment®,= (Py ,Py.,P,), and
plasmas composed of more than a few dozen ions, the be- L
havior of the maximum Lyapunov exponent can nevertheless
be understood, thanks to statistical mechanics, as shown here
below.

The pl_an of the paperis the following. The system and Sthe jons are trapped in a bounded motion under the condi-
Hamiltonian are defined in Sec. Il. Its dynamical and statisyion that
tical properties are described in Sec. lll. Its sensitivity to
initial conditions is characterized by the maximum Lyapunov
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exponent in Sec. IV. Conclusions are drawn in Sec. V.

Il. THE SYSTEM

We consider a microplasma composed\bfons of mass
m and electric chargg in a Penning trap with the electro-
static potential
22— x2—y?

q)(xiyaz):VO ’ (2)

2 2
rot2z;

and the magnetic field along thredirection of vector poten-
tial

1
A(xy,2)=5(=By,Bx,0). )
The Hamiltonian of the full system is given by
N q
= —[pi—qA(r) 1>+ qd(r;)) |+ :
H iZl(Zm[lo. GAMPTa(ry) |+ 3
(4)

wherer;=(x;,y;,z) is the position of the iori, rj; is the
distance between the iorisand j, and gy is the vacuum

1
0<|'y|<—.

V2

The trap is prolate if &|y|<1/\/6, isotropic if|y|=1/\/6,
and oblate if 1{6<|y|<1/J2. The motion is quasi-one-
dimensional in the limity=0 and quasi-two-dimensional in
the limit | y|=1//2. TheZ direction is a symmetry axis so
that theZ component of angular momentumzzi(xiPYi
—YiPyx) is conserved. We suppose from now on that this

angular momentum vanishds;=0.

C)

Ill. DYNAMICAL AND STATISTICAL PROPERTIES

In the following, the motion is studied in the Larmor ro-
tating frame. Figure 1 depicts typical trajectories of a system
of N=20 ions in an oblate trap in theY plane perpendicu-
lar to theZ direction of the magnetic field. The ions have a
periodic micromotion at frequency in the Z direction which
is not apparent in thXY plane where the nontrivial motion
is observed.

At zero temperature or kinetic energy, the system freezes
in a crystalline stat¢20—25. In the present case, the ion
crystal is seen in Fig.(d). It is composed of a central ion
surrounded by an inner ring of seven ions and an outer ring
of 12 ions. At nearly zero temperature, the ions have a qua-

permitivity. In the Penning trap, the ions are submitted to asiperiodic, quasiharmonic motion around their equilibrium

harmonic confinement in thedirection of frequency

[ 4aVo
w,= 5 5
‘ m(r2+2z3)

©)

and in the perpendicular direction due to the cyclotron mo

tion of frequencyw.=qB/m. In a frame rotating around the
z axis at the Larmor frequency, = /2 the ions feel a
harmonic confinement of frequency

N N

(6)

Oy= Wy=

'bloem
|
N8

position. It is the regime of normal modes of vibration.

At slightly positive temperatures, the system may already
have bifurcated from the regime of quasiharmonic normal
modes to another regime where local modes exist. This is
already the case in Fig(d), where we observe that the inner
ring is animated by a slow collective motion, or soft mode,

while the outer ring has a configuration which is essentially
fixed. For this to occur the energy should be higher than the
energy barriers for locking the rotation of the inner ring with
respect to the outer ring. Such energy barriers are still very
small with respect to barriers for exchange of ions within a
ring or between rings as observed in Figh)l

At temperatures high enough for exchanges of ions, their
motion becomes erratic and the ion crystal melts, as seen in

in the direction perpendicular to the magnetic field. In theFigs. 1(b) and Xc).

rescaled timer=w/, position R=r/a, and energyH
=Hl/(mwZa®) with a=[q%(4me,mw?)]Y?, the Hamil-

At still higher temperature, the ions form a thermal cloud
in which the mean Coulomb potential energy,) starts to

tonian describing the motion in the Larmor rotating framebecome negligible with respect to the mean kinetic energy

becomes

(K) and mean harmonic potential enery,). Indeed, the
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FIG. 1. Trajectories of a system of 20 ions with=0 in an
oblate Penning trap withy=0.7 at total energiesta) E=21.6,
where\;=0.001; (b) E=22, where\ ;=0.021; (c) E=23, where
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A1=0.047.X andY are dimensionless coordinates of position.
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(XE) = (¥7) =

and (Z?)= ! (12)
1-24° ! yz.

The mean Coulomb energy thus decreases at high tempera-
ture as

N2\  N?
<VC>~<R_”> NT_1/2' (12

The thermodynamic entropy of the ion thermal cloud can
also be estimated by neglecting the Coulomb interaction to
get

94( kBT)3

S=keN lnNﬁwxﬁwyﬁwZ'

(13

wheree=exp(1). This entropy is an increasing function of
the temperature, indicating that the spatial distribution of the
ions is more and more disordered as the temperature in-
creases.

IV. SENSITIVITY TO INITIAL CONDITIONS
A. Theory

Sensitivity to initial conditions is characterized by the
growth rate of an infinitesimal perturbatioi” on a trajec-
tory of the system in the phase space of positions and mo-
menta of all the particled; ={R; ,P;}}_, . This growth rate
is the so-called Lyapunov expondr]

1 |lorl

A=lim—-In——,
t [Tl

t—oo

(14)

where [|oT] is the magnitude of the perturbatiodT’
={8R;,6P;}L,. In many-particle systems, there exist as
many Lyapunov exponents as phase-space dimensions. Here,
we shall be concerned by the maximum Lyapunov exponent
N1 computed with Eq.(14) starting from a typical initial
perturbation 6T"y. The time evolution of the perturbation
oT'={6R;,6P,}}L, is ruled by the second variation of
Hamiltonian(7) of the system,

1 2 2
- %) (6X2+ 6Y?)+ 7? 523}

1
2= |Z P2+ | =
&°H 2[25P,+8

total energyEf(K}+<Vh>+<Vc> is then essentially shared 1 5Ri21 (R OR;;)>2
between the kinetic energy and the harmonic potential en- - = 2 -3 . (15
ergy, 255 | R Ri

with

E 3
(K)y=(Vp=5=5NT,

a dimensionless

temperature

(10

defined by

The first terms describe the time evolution of the perturba-
tion under the harmonic potential of the Penning trap. This
motion is regular and would give vanishing Lyapunov expo-
nents if the ions were not interacting via the Coulomb poten-
tial. Therefore, positive Lyapunov exponents come from the

=kg7/(mw?a?). This is the thermal regime which can be last Coulombic terms iR} ®. As shown in the Appendix, the
described by statistical mechanics as explained in the Apperthird inverse moment of the interparticle distance decreases
dix. The mean square position of the ions is then given by at high temperature as
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FIG. 2. Maximum Lyapunov exponent; vs total energye for
systems of 5, 10, 20, and 40 ions with=0 in an oblate Penning N /';LG' :;’\ LO?BIO? plolt (;)]; tthle nre;sca}lzedf Ir_)t/rz:lpuno:/ nc]expcf)r;ent
trap with y=0.7. The dashed lines are fits to the data points. The, (A} VS 1€ rescaled fotal ene 8Y/E, fo € systems of 5,
plotted quantities are dimensionle&ee text 10, 20, and 40 ions shown in Fig. 2. The continuous line is the
theoretical prediction(17), shifted upward to avoid superposition

with the numerical data. The plotted quantities are dimensionless.

1 InT
<R_ﬁ> N @ (16 the energyE =23, where the Lyapunov exponent takes the
value \;=0.047 significantly lower than its value ;
If all the N? terms asRi]3 in Eg. (15) are supposed to con- =0.114 at the maximum occurring around the eneBy

tribute to the maximum Lyapunov exponent, we should have=40 in Fig. 2 for N=20. This shows that the Lyapunov
exponent reaches its maximum value for energies well above

N2\ Y2 (nT)v2 the melting seen in Fig. 1. Actually, the melting of the crystal
A~ R® - T34 for  T—ee. (17 does not leave a signature in the behavior of the Lyapunov
ij exponent, except possibly in quasi-one-dimensional systems

Thus, the expectation is that the maximum Lyapunov expo£See below.

nent decreases for increasing temperature and increases withThe maximum value of the Lyapunov exponent s numeri-
the number of ions in the high-temperature regime. cally observed to happen at an energy scaling witras
Emax~N8, which is a power-law similar to that d&,. The

B. Dependence on energy and ion number maximum _value (_)ml is al_so increasing witlN, as seen in
' Fig. 2. This maximum arises at an energy where the har-
The maximum Lyapunov exponent has been computedhonic potential energy is of the same order of magnitude as
numerically for microplasmas containing more and morethe Coulomb potential energy. The confinement of the ions
ions in the oblate Penning trap of Fig. 1. The results aréby the external potential of the trap precludes a possible ther-
depicted in Fig. 2, where we observe the sharp increases afiodynamic limit as in translationally invariant systems. The
the Lyapunov exponent just above the minimum endfgy external potential and the long range of the Coulomb inter-
of the static ion crystal. The Lyapunov exponent increases upction have for consequence the observed increase of the
to a maximum value and then decreases. We observe that theaximum value ofx; with N.
maximum value shifts toward higher energies and higher val- In order to investigate the high-temperature behavior, the
ues as the number of ions increases. Lyapunov exponent is rescaled by its maximum value
Let us describe in detail what happens near the minimunmaxz{\,}, where the maximum is taken over the dependence
energyEy. This energy is the total potential energy of the of \; on the energyE. The rescaled Lyapunov exponent
system at zero temperature when the kinetic energy vanishes; /max{\4} is depicted as a function of the rescaled energy
It is shown in the Appendix that this energy should increaseE/E in Fig. 3. At high temperature, this rescaled energy is
asEq,~ N3 with the number of particles, which is in agree- proportional to the temperatuf® according to Eq(10) so
ment with the numerical results. For energies just alfeyye  that Fig. 3 essentially depicts the rescaled Lyapunov expo-
the ions are in quasiharmonic motion following the normalnent versus temperature. It allows us to test the dependence
modes of vibration around the equilibrium position of the of the Lyapunov exponent on the temperature. The theoreti-
crystal, as discussed in the preceding section. This explairnsal expectation of Eq.17) is shown as the solid line in Fig.
that the Lyapunov exponent vanishes with the kinetic energy3, which agrees with the decrease of the Lyapunov exponent
As seen in Fig. 1 for the system witki=20 ions, the ions for our largest values oN. Deviations occur for smaller
soon have enough energy for their motion to be erratic. Fovalues ofN, which may be due to the fact that the large-
instance, Fig. (c) depicts the motion of th&l=20 ions at  system limit required for the applicability of statistical me-
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0.25 : : : for the controlled manipulations of the ions. In this sense, the
> y=0.02 | inverse of the Lyapunov exponent is an indicator of the con-
I = y=612| ] trollability of the motion of ions. The larger the inverse
02} P « y=07 |1 Lyapunov exponent is, the longer is the interval of time when
i the motion is under control. Similarly, the control of the spa-
o1sh % tial distribution of the ions goes with the minimization of the
' ] standard thermodynamic entropy at low temperature.
3 ] The Lyapunov exponent turns out to decrease at high tem-
0.1 & ] perature because the Coulomb interaction becomes negli-
@ %% ] gible and the microplasma forms a thermal cloud of nearly
%, . ] independent ions moving in the harmonic potential of the
A k. ] trap. At high temperature, the spatial disorder of these micro-
% k3 ‘ plasmas characterized by the standard thermodynamic en-
n L T o tropy (13) always increases although dynamical chaos de-
1 10 100 1000 10000 Creases as in Eq(l7). This decrease of the maximum
E Lyapunov exponent that we observe here in trapped micro-
plasmas in reminiscent of a result obtained for a one-
FIG. 4. Maximum Lyapunov exponent; vs total energyE for dimensional wave-particle model of plasma9,30, in
a system of ten ions with ;=0 in Penning traps withy=0.02  which the maximum Lyapunov exponent even vanishes in
(prolatg, y=6""?=0.4082 (isotropig, and y=0.7 (oblats. The  the thermodynamic limit above a critical energy. In the three-
dashed lines are fits to the data points. The plotted quantities aigimensional trapped microplasmas we study here, the maxi-
dimensionlesgsee text mum Lyapunov exponent does not vanish as in the model of
Refs.[29,3( but decreases at high temperature according to

chanics is not yet reached at such small valuedlsf5 or  Eq. (17) because of the quasiharmonic motion in the trap
10. Nevertheless, the numerical data are in agreement witotential.

the dependence on the temperature predicted by 1&g for At intermediate values of energy, our results show that
large values oN, as expected. there is a regime of significant dynamical chaos which be-

comes broader and broader as the number of ions increases.

In this intermediate regime, the Lyapunov exponent reaches

a maximum value which turns out to increase as a function
Figure 4 depicts the Lyapunov exponentversus energy of the number of ions. This dynamical chaos could possibly

for a microplasma of ten ions in traps of different shapes. Wehe measured in experiments tracking the trajectories of the

observe that the motion in the isotropic trap is significantlyions of the microplasma using the methods of REZ6~25.

more chaotic than in the extreme oblate and prolate traps. IBuch an experimental measurement of a Lyapunov exponent

a quasi-one-dimensiongprolate trap, the Lyapunov expo- would be a great achievement which could solve the funda-

nent is observed to increase slowly during the melting of theénental question to know whether the sensitivity to initial

ion crystal in contrast to the multidimensional cases. Thesonditions is strong or weak in the many-particle systems of

reason is that the ions keep their one-dimensional order up tgtatistical mechanics.

a critical energy where ions can jump over each other, lead-

ing to chaotic motion. In all cases, the Lyapunov exponent ACKNOWLEDGMENTS

decreases at high energy.

Lyapunov exponent
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C. Dependence on trap geometry
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In the present paper, we have shown that the motion of .
ions in microplasmas presents an exponential type of sensi- APPENDIX: STATISTICAL MECHANICS
tivity to initial conditions characterized by a positive maxi- OF THE ION SYSTEM
mum Lyapunov exponent and we have studied the depen- |n this appendix, we show how to calculate the properties
dence of this exponent on the energy of the system, on thgs interest with statistical mechanics.
number of ions, as well as on the geometry of the trap. The large-scale statistical properties can be described by

~ At low kinetic energy where the microplasma forms anne following free-energy functional of the densityR) of
ion crystal, the dynamical chaos is much reduced because thgns:

motion is quasiharmonic around the crystal equilibrium con-

figuration. In order to minimize the dynamical chaos in sys-

tems of ions for instance to build well-controlled quantum F:E_TSZJ dR
devices, our results show that high-dimensional behavior as

V. CONCLUSIONS

2
YL

3 yﬁ
=z 2., v2 2
2T+ 5 (X“4+Y9)+ > Z°In(R)

well as the exchanges of ions should be avoided. Our study n(R) n(R’) C
characterizes irregularity in the motion of ions in terms of + §J deR'—,—TJ an(R)InW’
the maximum Lyapunov exponent and shows under which IR=R’]

conditions the Lyapunov exponent may remain small enough (A1)
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where Yo=%2—9%2, V=7, and C
=e%(27T)*Ha’?’mwsh1)3, h being Planck constant. The

chemical potential is obtained from the first variation of the

free energy with respect to the density@s= [ usndR, and

should be constant at equilibrium so that we get the equilib-

rium density

2
_n

2T

®(R)

2

Y
2 2\ 2_
OC+Y?) = 5 2P~ —

n(R)~exp{ } (A2)

with the mean-field potential

ar "R

. (A3)
IR=R’]

@(R)=f

The mean-field potential typically decreasesRas at large

distances and becomes negligible with respect to the trap
harmonic potential at high temperature. Therefore, the den-

sity becomes Gaussian at high temperature.
At zero temperaturd =0, the kinetic energy as well as
the last term vanishes in function@l). Taking the Laplac-

ian of the chemical potential and using the formula

V21/|R||=—4m58(R), thus, shows that the density is equal
to a constant:

2vi+9f 1

n(R)= p= 3 for T=0. (A4)

PHYSICAL REVIEW B8, 056209 (2003

where

N Ty

n(R)Z (27TT)3/2

2 2
AN IR N
exp[ ST OCHY2) = 72| (A7)

Thus the moments are given by

1f dRdR
2

Using the permutation symmetry and a change of variables
from R andR’ to their sum and difference, we obtain for an
isotropic system withy, =y =y that

o o

wherer =||R—R’|. The first term in the exponential comes
from the trap harmonic potential and the second term from
the Coulomb repulsion. In the limifT—oe, the integral is
dominated by the trap harmonic potential for the moments
with a<3 and by the Coulomb repulsion for the moments
with «>3. For a=3, the integral can be evaluated by split-
ting it into two incompletel” functions at some valueg,
leading to an extra Afactor in the limitT—cc. Whereupon,

1
S %

ny(R,R")

IR—R'[|«

(A8)

)/3 © dr

_2JET3/2L re2

,erZ

1
F__)’ (A9)

Tr

This result implies that the radius of a zero-temperaturdV€ ©Ptain the following asymptotic behavior:

spherical microplasma scales/As-N*? as a function of the
numberN of ions and that its energy as

E=E,~N%® for T=0. (A5)

In order to estimate the inverse moments of the interpar-

ticle distanceRR;;=||R;—R|||, we need to take into account

the Coulomb repulsion between the ions. For a dilute system,

the two-particle density is given Hy31]

(AB)

HZ(R,R )ZH(R)H(R )EX[{ - m) ,

(1
for a<3
Ta/2
! InT (A10)
—)~9q In
Ri‘} — for =3
T3/2
L T* %2 for a>3,

as T—oo. These results give, in particular, the mean Cou-
lomb energy of Eq(12) and the third inverse moment of Eq.
(16) at high temperature.
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